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Studying intracellular processes using a Markov
chain truncation method

Slaven Peleš1

Abstract— Complexity and stochastic nature of intracellular
processes pose serious challenges for quantitative analysis and
require developing efficient computational methods. Thus far,
Gillespie’s kinetic Monte Carlo algorithm has been a gold
standard for simulating events inside a cell. We demonstrate that
a different approach based on Markov chain truncation provides
dramatic improvements over kinetic Monte Carlo methods,
both in terms of speed and accuracy. Here we introduce a
method for analysis of processes that reach their asymptotic
state quickly with respect to the observation time. This method is
complementary to earlier proposed Finite State Projection, which
is accurate only over a finite period of time.

Index Terms— master equation, stochastic dynamics, simula-
tions, gene networks, signal transduction.

I. MASTER EQUATION

INTRACELLULAR processes are often described by a set
of chemical reactions between proteins, RNA and DNA

molecules. Because copy numbers of relevant chemical species
are typically low, macroscopic chemical kinetics does not
give accurate quantitative prediction for such a system and
stochastic effects must be taken into consideration. Intracellu-
lar processes can be viewed as jump Markov processes and
modeled using master equation

ṗi(t) =
∑
j 6=i

[wijpj(t)− wjipi(t)] (1)

Master equation describes time evolution of probabilities pi

of finding system in a given state i. Here wij is a mesoscopic
transition rate from the state j to the state i. While this is an el-
egant way to describe dynamics of a stochastic system, solving
master equation, even numerically, is a difficult problem. One
way to do so is to carry out kinetic Monte Carlo simulations.
However, even for relatively simple systems computational
cost may be prohibitive.

II. STATE SPACE TRUNCATION

A more efficient approach can be formulated if we use a
little bit of intuition about the problem at hand. Cell has limited
size and resources and, hence, it is reasonable to assume that
all processes will take place within a narrow subset of the state
space. We can then approximate probabilities of all unlikely
states (say all pi>n) with some mean probability field p∞. If
we are interested only in a steady state probability distribution,
we can calculate ps

∞ from the condition
∑n

j=1 w∞j ps
j =

ps
∞

∑n
j=1 wj∞ and substitute it back in the truncated system.

In this way we obtain a closed system of equations from which
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Method Execution time 1-norm error

State space truncation 30s < 5× 10−5

Gillespie algorithm (1× 105 samples) 49s 0.024
Gillespie algorithm (3× 105 samples) 145s 0.017

we can compute approximate steady state distribution p̃s
i using

only simple linear algebraic operations. The approximation
error has strict upper and lower bounds. As an illustration
we apply truncation method and Gillespie’s algorithm to a toy
heat shock model [1] and compare computational cost and
accuracy of the two approaches.

There is a large number of problems where it is important
to find steady state probability distribution. For example,
an intricate interplay between ComK and ComS proteins in
competence model for Bacillus Subtilis [2] is summarized by
a probability distribution in the figure below. From there one
can easily find what fraction of cells enter the competent state.

III. CONCLUSION

We demonstrate that Markov chain truncation approach may
be a viable alternative to kinetic Monte Carlo simulations.
They generally have better convergence properties, allow for
more accurate error control and do not require random number
generators. Furthermore, since the system is reduced to a finite
size, a time scale separation can be readily applied [3]. Here
we described a method for calculating steady state probability
distribution. In case where transient processes are of interest
one should consider Finite State Projection method [4].
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